On Capacity Planning for Minimum Vulnerability

Alireza Bigdeli Ali Tizghadam Alberto Leon-Garcia

University of Toronto

DRCN - October 2011 Kakow - Poland

Outline

- Introduction
- Network Criticality and Its Interpretations
- Vulnerability Analysis
- Optimizing Vulnerability Metrics
- Evaluations
- Conclusion

Introduction

- Robustness : to be insensitive to the environmental changes
- Vulnerability: deals with bottleneck points of the network
 - Perturb network parts or environmental parameters
 - Measure performance degradation
- □ So more robust networks are less vulnerable
 - Less sensitive to unwanted environmental changes

Objective of this work

Network criticality (NC)

- A global measure of robustness on a graph
- Optimizing network criticality provides robustness
- Introduce vulnerability metrics
 - Based on the variations of NC in case of failures
- Optimize vulnerability metrics
 - to make the network less vulnerable to failures
- Compare the optimal weight sets
 - The metrics
 - Routing persformance

Outline

Introduction

Network Criticality and Its Interpretations

- Vulnerability Analysis
- Optimizing Vulnerability Metrics
- Evaluations
- Conclusion

Network Criticality

- Based on Random Walks Betweenness
- Consider a weighted graph
- \Box And a random walk from node s to d
- $\square b_{sk}(d) = \text{average number of visits to node } k$

$$\Box \text{ Let } b_k = \sum_{s,d} b_{sk}(d)$$

- □ It can be shown that b_k/W_k is independent of the node
- And it is a unique value which we name it Network Criticality

Interpretations of NC

Average Resistance Distance

- \Box τ_{sd} = Resistance distance between nodes *s* and *d*
- τ_{sd} = effective resistance between two nodes when conductance's are equal to weights
- Network criticality is proportional to the average of τ_{sd} 's

$$\tau = \sum_{i} \sum_{j} \tau_{ij}$$

Average Sensitivity of betweenness to weight changes

$$\tau = \frac{1}{m-1} \sum_{(i,j)\in E} \frac{\partial b_{ij}}{\partial w_{ij}}$$

Formulation of NC

- \square If $L = [l_{ii}]$ is the Laplacian of the graph,
 - and $L^+ = [l_{ij}^+]$ is its Moore Penrose inverse :
- $\Box \quad \tau_{sd} = l_{ss}^+ + l_{dd}^+ 2l_{sd}^+ \quad or \quad \tau_{sd} = u_{sd}^t L^+ u_{sd}$ $\tau_{sd} = \frac{b_{sk}(d) + b_{dk}(s)}{W_k}$

$$\hat{\tau} = \frac{1}{n(n-1)} \sum_{s,d} \tau_{sd} = \frac{2}{n-1} Tr(L^+)$$
$$\Pi \eta_k = \frac{b_k}{W_k} = \frac{n(n-1)}{2} \hat{\tau}$$
$$\eta_{ij} = \frac{b_{ij}}{w_{ij}} = n(n-1)\hat{\tau}$$

Outline

Introduction

- Network Criticality and Its Interpretations
- Vulnerability Analysis
- Optimizing Vulnerability Metrics
- Evaluations
- Conclusion

Vulnerability Analysis

- □ Study the behavior of NC when failures happen
- Definitions: $\hat{\tau}^{(ij)} = \text{NC}$ of the network when link (*i*, *j*) fails $\hat{\tau}^{(i)} = \text{NC}$ of the network when node *i* fails
- $\square max(\hat{\tau}^{(ij)}) = \text{the worst value NC takes in case of a single link failure}$
- The most critical link
- $\square max(\hat{\tau}^{(i)}) = \text{the worst value NC take in case of a single node failure}$
- □ The most critical Node
- we call these values Vulnerability Metrics

Optimizing Vulnerability Metrics

- Optimizing the vulnerability metrics
- make the network less vulnerable to node or link failures
- Proposed Planning Optimizations:
- □ *MMTL* : *M*inimize *M*aximum *T*au in case of *L*ink failures
- □ MMTN: Minimize Maximum Tau in case of Node failures
- □ *OT* : *O*ptimize *T*au
- □ We assume:
- \Box z_{ii} be the cost of assigning a unit of w_{ij} to link (i, j)
- Then the total planning cost for the network is:

$$\sum_{(i,j)\in E} z_{ij} w_{ij}$$

□ And we consider a total budget of *C* for the network

MMTL Formulation

- $\begin{array}{|c|c|c|} \hline \textbf{MMTL Formulation:} \\ Minimize & max(\hat{\tau}^{(ij)}) & \forall (i,j) \in E \\ Subject \ to & \sum_{(i,j)\in E} z_{ij}w_{ij} \leq C, \ C \ is \ fixed \\ & w_{ij} \geq 0 \end{array}$
- $\exists \hat{\tau}$ is an strictly convex function of link weights
- $\square \hat{\tau}^{(ij)}$ is the NC of the network without link (*i*, *j*)
- **D** So $\hat{\tau}^{(ij)}$ is convex as well
- **And** $max(\hat{\tau}^{(ij)})$ is convex since
- It is the maximum of some convex functions
- And this is a convex optimization problem
 - Convex objective
 - Linear constraints

MMTN and OT Formulation

- □ Again we can prove that $max(\hat{\tau}^{(i)})$ is a convex function of link weights and
- □ *MMTN* is a convex optimization problem as well: $Minimize max(\hat{\tau}^{(i)}) \quad \forall i \in N$

Subject to
$$\sum_{\substack{(i,j)\in E\\ w_{ij} \ge 0}} z_{ij} w_{ij} \le C, \ C \ is \ fixed$$

□ We use *OT* as a comparison base:

$$\begin{array}{ll} Minimize & \hat{\tau} \\ Subject \ to & \sum_{(i,j)\in E} z_{ij} w_{ij} \leq C, \ C \ is \ fixed \\ & w_{ij} \geq 0 \end{array}$$

13

SDP Formulation

- SDP can be solved numerically faster for larger networks $\hat{\tau}^{(ij)} = \frac{2}{n-1} Tr(L^{(ij)+}) = \frac{2}{n-1} Tr(L^{(ij)} + J/n)^{-1} - \frac{2}{n-1}$ SDP formulation for *MMTL*: $Minimize \quad \frac{2}{n-1} \ t - \frac{2}{n-1}$ Subject to Diag(Vec(W)). $\overrightarrow{1} < C$ $\begin{pmatrix} \Gamma^{(ij)} & I \\ I & L^{(ij)} + \frac{J}{n} \end{pmatrix} \succeq 0 \qquad \forall (i,j) \in E$ $Tr(\Gamma^{(ij)}) \le t$ $\forall (i,j) \in E$ $Diag(Vec(W)) \succeq 0$ Schur complement of $\Theta_{ij} = \begin{pmatrix} \Gamma^{(ij)} & I \\ I & L^{(ij)} + \frac{J}{2} \end{pmatrix}$ is $\Gamma^{(ij)} - (L^{(ij)} + J/n)^{-1}$
- It is used to obtain this SDP formulation

Evaluations

Networks

- Fish network
- Rocketfuel Networks and Abilene
- CVX to solve SDPs
- **5** weight sets for each network

Method	Description	Optimized Metric
EW	Equal Weights	-
IW	Initial Weights	-
OT	Optimum $\hat{\tau}$	$\hat{ au}$
MMTL	Minimize Maximum $\hat{\tau}$ in case of Link failures	$max(\hat{ au}^{(ij)})$
MMTN	Minimize Maximum $\hat{\tau}$ in case of Node failures	$max(\hat{\tau}^{(i)})$

□ Weights for EW:

$$w_{ij} = C/(\sum_{(i,j)\in E} z_{ij}) \quad \forall (i,j)\in E$$

Weight sets for Fish Network

(a) EW

(b) OT

Fish Network Parameters

RocketFuel Dataset

- Consolidate the nodes within a city
- Aggregate all the links between two cities
- □ Use OSPF weights to find out capacities
- OSPF weights are proportional to reciprocal of capacities

ISP	Routers	Links	Reduced	Reduced	Weight	Total
			Cities	Links	per Link	Weight
1755	87	322	18	33	0.7822	51.628
3967	79	294	21	36	0.6743	48.551
1239	315	1944	30	69	0.7231	99.784

Parameters of 1755 Network

	$\hat{ au}$	$-max\hat{ au}^{(ij)}$	$max\hat{ au}^{(i)}$
IW	1.9408	3.6802	3.6557
EW	1.1977	1.5478	1.7525
OT	1.1013	1.3774	1.6188
MMTL	1.1239	1.3277	1.707
MMTN	1.1257	1.419	1.4997

Comparison of IW and EW with Optimized Weight Sets

(b) 3967

(d) Abilene

Comparison of Optimized Weight Sets

(c) 1239

(d) Abilene

Observations

- A huge gap between IW and optimized weight sets
- Our optimizations significantly improve the vulnerability of the networks
- □ Metric improvement for 1755 compared to IW
 - 42% for Tau
 - 61.4% for max-tau-ij
 - 60% for max-tau-i
- In different optimization methods
 - less variations in tau
 - More variations in max-tau-ij and max-tau-i

Routing Performance

- □ Applying the same traffic matrix
- □ Gravity Model to obtain traffic matrix
 - Input to each node proportional to capacity of links attached to it
 - It divides among the nodes proportional to capacity of links attached to them
- □ And the same routing method (independent)
- Using Totem Package
- □ IGP-WO weight optimizer to find OSPF optimal weights
- Uses Tabu search meta-heuristic method
- Capacity of links equal to the weight sets from our optimizations
- Examine link utilization before and after a failure

Link Utilization Before and After a Link Failure

Link Utilization Before and After a Node Failure

Conclusion

- Define vulnerability metrics for a communication network
- Propose optimization problems to optimize these metrics
- Convert optimizations to SDP to be able to apply them on large networks
- Apply them on ISP topologies from Rocketfuel dataset
- Compare the metrics and routing performance using TOTEM package
- □ Future research
 - More than one failure
 - Correlated failures
 - Probabilistic approach to the failures
 - Compare to other graph metrics such as Algebraic Connectivity

Thank You